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Abstract. Digital signatures based on Elliptic Curve Digital Signing
Algorithm (ECDSA) are widely used in Ethereum to secure transactions
and Proof-of-Stake (PoS) consensus protocols. However, those digital
signatures are vulnerable to quantum computing and therefore endan-
ger the security of Ethereum and its millions of users’ crypto assets.
Based on the previous work in [16, 17], we present two proposals for a
smooth migration of Ethereum towards post-quantum security in this
paper. While the first proposal introduces a new Ethereum transaction
type to encapsulate a quantum-safe zero-knowledge proof, the second
one further improves system scalability via proof aggregation and zero-
knowledge rollups. Our proposals only introduce minimal changes to the
software running on Ethereum validators and clients, thereby achieving
great backward compatibility. We report our initial evaluation results of
the two proposals on Microsoft’s Azure cloud platform and highlight the
key observations, in the area of improving proof generation timing and
proof sizes, for deploying our solutions in practice.
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1 Introduction

With the possibility of large-scale quantum computing on the horizon, blockchain
systems (e.g., Ethereum) that are currently secured by elliptic curve cryptogra-
phy could become vulnerable to a quantum attacker. As shown in Fig. 1, ECDSA
has been extensively used in Ethereum for users signing transactions, validators
verifying transactions in a PoS consensus process, among other use cases. Once a
user has made a transaction with his/her Ethereum wallet, a quantum attacker
is able to recover the user’s private key using Shor’s algorithm [15] and steal
all the assets from the user’s wallet. As a result, migrating Ethereum towards
post-quantum security is a critical step for protecting users’ crypto assets in the
near future.

The National Institute of Science and Technology (NIST) has been working
on the Post-Quantum Cryptography project [12] during the past seven years
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Fig. 1. The Usage of ECDSA in Ethereum

for soliciting, evaluating, and standardizing quantum-resistant public-key cryp-
tographic algorithms. In the Ethereum research community, there was a pro-
posal [11] regarding adoption of NIST standardized quantum-safe signature al-
gorithm Falcon in Ethereum. Recent post [2] by Vitalik Buterin has further
highlighted importance of migrating Ethereum towards post-quantum security.
In [16], Tan and Zhou proposed a novel generic construction of quantum-safe
signature algorithms by augmenting a classical digital signature with a quantum-
resistant zero-knowledge proof of knowledge of the pre-image of the private sign-
ing key using ZKBoo [7]. For verifying such a quantum-safe signature, a verifier
needs to verify validity of both the classical signature and corresponding zero-
knowledge proof. In [17], Tan and Zhou further analyzed the impact for migrating
blockchain away from ECDSA for post-quantum security.

In this paper, we present two proposals to enable a smooth migration to-
wards post-quantum security for Ethereum. Our proposals are built upon the
quantum-safe signature algorithm proposed in [16]. The first proposal covers
how Ethereum at Layer-1 can be updated to be post-quantum secure by natively
verifying every additional quantum-resistant zero-knowledge proof submitted by
the users. The second proposal further improves on scalability of the first one
by leveraging zk-Rollups coupled with a tree-based recursive proof aggregation
process. In particular, our proposals align well with the current implementations
of Ethereum validators and clients and therefore achieve great backward com-
patibility. The initial performance evaluation results demonstrates a path for
deploying our solution in practice.

The rest of the paper is organized as follows: In Section 2, we present some
preliminaries, followed by the detailed description and implementation consid-
erations of our two migration proposals in Section 3. Section 4 evaluates the
performance of our migration proposals and highlights the key observations with
respect to the real-world deployment. Finally, we conclude the paper in Section 5.
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2 Preliminaries

In this section, we cover the preliminaries on quantum-safe digital signature
algorithms and zero-knowledge proofs, Ethereum transactions, and zk-rollups.

2.1 Quantum-Safe Digital Signature Algorithms

In [16], Tan and Zhou described a novel approach for layering in quantum-
resistance into classical digital signature algorithms like ECDSA by applying
quantum-safe zero-knowledge proofs on the pre-image of the private signing key.
The proposed generic quantum-resistant digital signature scheme consists of the
following three algorithms:

– KeyGenq(1
n) → {ρ,Kp} takes in a security parameter 1n which defines

the cryptographic key strength of n, and outputs a secret pre-image ρ and
a public key Kp. Kp is the associated public key to the private key H(ρ)
where H(·) is a collapsing hash function [19]3

– Signq(M,ρ) → {σ, ϕ} takes in a message M and the secret pre-image ρ,
and outputs a signature σ computed using the classical signature algorithm
Sign(M,H(ρ)) as well as a quantum-resistant zero-knowledge proof ϕ that
i) H(ρ) is computed from ρ and ii) σ is computed from H(ρ).

– Verifyq(M,Kp, σ, ϕ) → {result} takes in a message M , the public key Kp

and signature σ, and outputs accept if and only if the classical signature
verification algorithm Verify(M,Kp) returns accept and ϕ is a valid zero-
knowledge proof that σ is computed from ρ.

The above construction is able to achieve quantum resistance while maintaining
backward compatibility with existing classical digital signature implementations.

2.2 Ethereum Transactions

An Ethereum transaction refers to an action initiated by an externally-owned
account (EOA). As of Ethereum’s London upgrade, there are three transaction
types: 0x0 (EIP-2718 [21]), 0x1 (EIP-2930 [5]), and 0x2 (EIP-1559 [3]). Transac-
tions with type 0x0 are legacy transactions that contain the following parameters:

– nonce: A sequentially incrementing counter which indicates the transaction
number from the account;

– gasPrice: The number of Wei to be paid per unit of gas for conducting a
transaction or executing a contract;

– gasLimit: The maximum amount of gas units that can be consumed by the
transaction;

– to: The 160-bit receiving address;
– value: The number of Wei to transfer from sender to recipient;

3 Collapsing hash functions are defined to be collision-resistant in the face of quantum
attacks.
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– data: The optional field to include arbitrary data;
– v, r, s: The signature of the transaction used for determining the identifier

of the sender.

Transactions with type 0x1 were introduced in EIP-2930 and contain, along with
the legacy parameters, an accessList parameter. Each access list is a tuple of an
account address and a list of storage keys that the transaction plans to access.
Finally, transactions with type 0x2 were introduced in EIP-1559 for addressing
the network congestion and overpricing of transaction fees caused by the histor-
ical fee market. To this end, EIP-1559 replaces gasPrice in legacy transactions
with an in-protocol, dynamically changing base fee per gas at each block.

2.3 Quantum-Safe Zero-knowledge Proofs

In cryptography, zero-knowledge proof (ZKP) [8] is a method by which one party
(i.e., a prover) can prove to another party (i.e., a verifier) that a given state-
ment is true, without disclosing additional information beyond the fact that the
statement is true. ZKPs need to satisfy the formal requirements of completeness,
soundness, and zero-knowledge, thereby enabling one to build trustless applica-
tions. Earlier design of ZKPs are not quantum-resistant and those that only
use collision-resistant hash functions are plausibly post-quantum secure. Zero-
Knowledge Scalable Transparent ARgument of Knowledge (zk-STARK) [1] and
MPC-in-the-Head (MPCitH) [10] are well-known quantum-safe ZKP examples
widely used in practice.

2.4 zk-Rollups

A zero-knowledge rollup (a.k.a. zk-Rollup) [18] is a Layer-2 scaling technique
for Ethereum. zk-Rollups bundle transactions into batches that are executed
off-chain and verified on-chain using non-interactive ZKPs, thereby greatly in-
creasing transaction throughput and reducing transaction costs. In practice, zk-
Rollups inherit the security of a Layer-1 blockchain and rely on it for data
availability and settlement. zk-Rollups are typically realized using two smart
contracts deployed on a Layer-1 blockchain, namely a main contract and a ver-
ifier contract. While the main contract stores rollup blocks, track transactions,
and monitor state updates, the verifier contract verifies ZKPs submitted by the
Layer-2 rollup nodes. When combining zk-Rollups with post-quantum signa-
tures, an off-chain node can verify multiple signatures and generate a (succinct)
zero-knowledge proof that could be verified by a smart contract. Such a combi-
nation is able to improve the system scalability and user experience significantly.

3 Migration Approaches

To protect Ethereum transactions from potential risks of the rapid growth of
quantum computing, we describe two incremental proposals for migrating Ethereum
towards post-quantum security in this section. Without loss of generality, legacy
transactions will be used as examples throughout this section.
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3.1 Layer-1 Hard Fork

Our first proposal is to introduce new transaction types that augments each ex-
isting transaction type with a new parameter proofUri. This parameter contains
the URI of a quantum-safe zero-knowledge proof (e.g., zkSTARK or MPCitH).
With the introduction of proofUri, an augmented legacy transaction will be
processed as illustrated in Fig. 2.

Fig. 2. The Process of Augmented Legacy Transactions

– A user generates a post-quantum secure zero-knowledge proof for the state-
ment that he/she knows a secret (e.g., a mnemonic phrase) which can be
used to generate the user’s Ethereum wallet address by following a specified
address derivation process (e.g. BIP-39 [14]).

– The user stores the generated proof to a selected storage provider and
obtains a publicly accessible URI proofUri.

– The user creates a transaction by augmenting a legacy transaction with
proofUri and sends it to the mempool of a validator.

– Upon receiving a new transaction in the mempool, a validator first verifies
the ECDSA signature in the transaction, followed by retrieving the proof
from the storage provider with proofUri and verifying its validity. A trans-
action is considered as valid if both signature and proof verification succeed,
besides other sanity checks.

The validation of a newly proposed block works as before, except that a
validator needs to verify the proof retrieved from storage provider with the
proofUri for each transaction in the block. Note that each transaction is publicly
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verifiable provided that the corresponding proof is publicly available and a user
might choose to delete the proof after the transaction passes the Ethereum’s
PoS consensus process. The introduction of proofUri does not incur significant
storage overhead for existing Ethereum validators and the length of proofUri
can be further restricted (e.g., less than 256 characters). The computational cost
of verifying a proof depends on the usage of a specific post-quantum secure zero-
knowledge proof scheme.

3.2 Layer-2 zk-Rollups

To further improve the system scalability, our second proposal is to employ
Layer-2 zk-Rollup architecture and process augmented legacy transactions in
batch, as illustrated in Fig. 3.

Fig. 3. Scalable Process of Augmented Legacy Transactions with zk-Rollups

The above process follows a typical zk-Rollup workflow with the following
modifications:

– Given a transaction batch processed by a rollup node, it needs to first re-
trieve all the zkSTARK proofs using the corresponding proofUri’s and then
aggregate those proofs into a final proof in a recursive manner.

– The transaction batch together with the single final proof are submitted to
the Layer-1 blockchain via a blob transaction as specified by EIP-4844 [4].

To generate a final proof in a recursive manner, the rollup node can leverage
a tree-based recursive proof aggregation process as shown in Fig. 4.

During the aggregation process, all the zkSTARK proofs (i.e., proof1, . . . ,
proofm) generated by users become the leaf nodes of an aggregation tree. For
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Fig. 4. A Tree-Based Recursive Aggregation of zkSTARK Proofs

each intermediate node, a STARK verification circuit is instantiated to aggregate
two proofs generated by its child nodes, respectively. Once the aggregated proof
(i.e., proof1,...,m) is generated, another STARK verification circuit is employed to
compress the aggregated proof into a final proof that can be verified on-chain4.

3.3 Implementation Considerations

In this subsection, we discuss implementation considerations when deploying the
proposed solution in practice.

User Proof Generation A majority of Ethereum wallets implement the ad-
vanced form of deterministic wallet (i.e., Mnemonic code based hierarchical de-
terministic (HD) wallet) as specified in BIP-32 [20], BIP-39 [14] and BIP-44 [13].
The key derivation in HD wallet follows a tree-like structure in which a parent
key can derive a sequence of child keys and each child key can derive a sequence
of grandchild keys, as illustrated in Fig. 5.

Hundreds of hash function operations need to be performed for deriving an
Ethereum address from a 12/18/24-word’s mnemonic code. As a result, prov-
ing the statement that a user knows the mnemonic code corresponding to an
Ethereum address leads to a complex ZK circuit and long proof generation time.

4 See https://github.com/starkware-libs/starkex-contracts/blob/master/evm-
verifier/solidity/contracts/StarkVerifier.sol for an example of a STARK proof
verifier written in Solidity.



8 Fan et. al.

Fig. 5. Key Derivation in HD Wallets [20]

In fact, one can make a flexible trade-off between security and complexity of
a proving circuit. For instance, a user may prove that he/she knows the pre-
image5 of the last hash function during the key derivation process in lieu of the
knowledge of the mnemonic code itself, which is going to reduce the complexity
of a proving circuit significantly.

Mnemonic Code Access Our proposals require access of a user’s mnemonic
code in order to generate zero-knowledge proofs. One approach is to ask a user
to type the mnemonic code each time he/she would like to send a transaction.
However, this approach results in poor user experience. Another approach relies
on the secure hardware backed Ethereum wallets (e.g., hardware wallets, mobile
wallets, etc.). In this case, a user can choose to store the mnemonic code in the
secure hardware and enforce a stringent access policy for accessing it.

Data Availability The new transaction type introduces the parameter proo-
fUri that is used to locate a user generated proof off-chain. Both proofUris and
proofs should be held by validators until the finality is reached on Ethereum.
After that proofUri and proof can be safely removed by the validators and
users, respectively. This approach does not incur additional overhead with re-
spect to the on-chain storage. Furthermore, it allows users to choose any off-chain
(centralized/decentralized) storage provider for storing generated proofs.

5 The user can use the mnemonic code and follow the key derivation process as spec-
ified in BIP-32 to obtain the pre-image of the last hash function.
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Backward-Compatibility and Fallback Our proposals can achieve backward-
compatibility by only introducing minimal changes to the existing implementa-
tions of Ethereum validators and clients. Moreover, if an Ethereum wallet does
not upgrade to support the new transaction type, it can still submit transac-
tions that only contain ECDSA signatures. However, it is up to an Ethereum
validator to determine whether those transactions are still being supported. Such
a fallback feature allows Ethereum validators and clients to complete software
upgrades in an asynchronous manner.

4 Performance Evaluation

In this section, the preliminary performance evaluation results are presented,
followed by a discussion of potential improvements.

4.1 Evaluation Setup

We proceeded to implement the proof generation algorithms as described in
Section 3.1 based on the following setup:

– Platform. We use a standard F32s v2 (Azure) x64 architecture with 32
vCPUs and 64GB RAM running Ubuntu 22.04 LTS.

– zkVMs. The Zero-knowledge proof circuits will be generated using zero-
knowledge Virtual machines (zkVMs). We use both SP1 6 version 1.0.8-
testnet, as well as RISC0 7 version 1.0.1 for proof circuit generation and
execution.

– Proof Algorithm. The algorithm chosen is described in Equation 1.

Signq(M,ρ) = secp256k1(M,Hash(ρ))

Hash(ρ) = SHA256(ρ)

M = 256 bit value

ρ = 256 bit value

(1)

4.2 Evaluation Benchmarks

Table 1 shows the results of execution of proof generation for a target security
of 100 bits.

The proof size generated per signature is at least 5 MBytes of data which is
not gas-efficient as expected. Proof generation also takes several minutes on a
CPU which is not feasible for most end-user transactional activities. Allocating
more memory to the virtual machines does not improve the performance.

We next explored the possibility of reducing the size of the proof based on:

1. Adjusting the security bits. This adjustment is supported on the SP1 zkVM
and the results are shown in Table 2.

6 available at https://github.com/succinctlabs/sp1
7 available at https://github.com/risc0/risc0
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Table 1. Comparing SP1 and RISC0 proof generation

zkVM SP1 RISC0

Proof Size (Bytes) 5,333,944 28,675,808
Memory Consumed (MBytes) 42,350 8,470

Program CPU Cycles 10,552,692 13,631,488
Execution Time (seconds) 309 442

Table 2. Comparing Proof Sizes based on Security Bits

Security Bits 60 80 100 128

Proof Size (Bytes) 3,253,624 4,293,784 5,333,944 6,790,168
Memory Consumed (MBytes) 42,350 42,230 42,350 42,150
Execution Time (seconds) 304 304 309 304

The size of proofs generated are linearly reduced based on the security bits,
although the memory consumed or execution time remains constant. The
reduction of security bits below 100 is not recommended since it will weaken
the proof, and allow attackers to potentially use Grover’s [9] algorithm, a
brute-force search quantum algorithm with quadratic performance speedup,
to compromise the system.

2. Using Layer-2 zk-Rollups as described in Section 3.2. A feature of the zk-
STARK proof system is the ability to batch multiple proofs into a constant-
size recursive proof. We tested this setup using both SP1 (compressed) and
RISC0 (succinct) options to apply to batch 3 proofs and 10 proofs for com-
parison purposes. We had to increase the platform’s memory from 64 GB to
256 GB to accommodate the execution, and retained the original security
bit setting of 100. The results of execution are found in Table 3.

Table 3. Comparing Performance of Recusive proofs.

zkVM SP1 RISC0
# of proofs combined 3 10 3 10

Recursive Proof Size (Bytes) 1,771,102 1,771,917 1,799,632 1,831,696
Memory Consumed (MBytes) 55,660 96,685 8,428 8,430
Execution Time (seconds) 442 797 982 1974

Based on our results, we can see that by batching the proofs, we can reduce
the unit size per proof in exchange for a higher execution time. When using
SP0 to batch 10 proofs, the average proof size per proof is reduced to 177
KBytes and execution time per proof is 80 seconds which starts to become
practical.
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4.3 Evaluation Discussion

From our preliminary benchmarks, we have obtained some concrete evaluation
results which demonstrate a path to practical implementation of our design. The
key observations are summarized below.

– The proof generation with SP1 and RISC0 is slow on CPU, thereby limiting
their usage in mobile and desktop wallet applications directly. A dedicated
ZKP proving service with hardware acceleration (e.g., GPU, FPGA, etc.)
should be deployed to improve user experience in practice, as illustrated in
Fig. 6. Note that the ZK proving service should run inside a trusted execu-
tion environment (TEE) to ensure security of processing users’ mnemonic
codes. A hardware-based remote attestation process [6] is conducted each
time a mobile or desktop wallet needs to connect to the proving service
for generating a ZK proof. Although such an implementation increases the
attack surface area, it will improve usability and user adoption.

Fig. 6. A ZK Proving Service Running inside a Trusted Execution Environment (TEE)

– The proof size of zkSTARK is large and using a data availability solution like
EIP-4844 [4] can effectively reduce the cost of storing transaction batches
and the corresponding aggregated proofs on chain.

– The proof aggregation can effectively amortize the proof size, at the cost of
higher proof generation time and hardware platform requirements.

5 Conclusion

Although the threat of quantum computers to endanger the security of Ethereum
may be some years away, the early articulation of clear requirements and direc-
tion of how a quantum-safe Ethereum can be achieved will remove any wild spec-
ulation to the fate of Ethereum and its community. We have proposed concrete
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approaches that focused on backward-compatibility for a smooth post-quantum
migration experience for both users and developers, while not compromising on
quantum-safety. The initial performance evaluation demonstrates the technical
viability of our solution, and highlights the need for proof generation time and
proof size reduction in order to make the solution usable. As our future work,
we will focus on continuing improving performance and user experience of our
solution by exploring memory-efficient ZK proof systems as well as customized
ZK circuits.
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